3.362 \(\int \frac{\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=224 \[ \frac{2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac{2 b \left (3 a^2 A b-2 a^3 B+A b^3\right )}{a^2 d \left (a^2+b^2\right )^2 \sqrt{a+b \tan (c+d x)}}-\frac{2 A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{a^{5/2} d}+\frac{(A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d (a-i b)^{5/2}}+\frac{(A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d (a+i b)^{5/2}} \]

[Out]

(-2*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(a^(5/2)*d) + ((A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqr
t[a - I*b]])/((a - I*b)^(5/2)*d) + ((A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/((a + I*b)^(5/2
)*d) + (2*b*(A*b - a*B))/(3*a*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2)) + (2*b*(3*a^2*A*b + A*b^3 - 2*a^3*B))/
(a^2*(a^2 + b^2)^2*d*Sqrt[a + b*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.918239, antiderivative size = 224, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 8, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.258, Rules used = {3609, 3649, 3653, 3539, 3537, 63, 208, 3634} \[ \frac{2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac{2 b \left (3 a^2 A b-2 a^3 B+A b^3\right )}{a^2 d \left (a^2+b^2\right )^2 \sqrt{a+b \tan (c+d x)}}-\frac{2 A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{a^{5/2} d}+\frac{(A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d (a-i b)^{5/2}}+\frac{(A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d (a+i b)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(5/2),x]

[Out]

(-2*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(a^(5/2)*d) + ((A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqr
t[a - I*b]])/((a - I*b)^(5/2)*d) + ((A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/((a + I*b)^(5/2
)*d) + (2*b*(A*b - a*B))/(3*a*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2)) + (2*b*(3*a^2*A*b + A*b^3 - 2*a^3*B))/
(a^2*(a^2 + b^2)^2*d*Sqrt[a + b*Tan[c + d*x]])

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n
 + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e +
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(
m + n + 2)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 2)*Tan[e + f*x]^2, x], x
], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& LtQ[m, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ
[a, 0])))

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \frac{\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx &=\frac{2 b (A b-a B)}{3 a \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac{2 \int \frac{\cot (c+d x) \left (\frac{3}{2} A \left (a^2+b^2\right )-\frac{3}{2} a (A b-a B) \tan (c+d x)+\frac{3}{2} b (A b-a B) \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^{3/2}} \, dx}{3 a \left (a^2+b^2\right )}\\ &=\frac{2 b (A b-a B)}{3 a \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac{2 b \left (3 a^2 A b+A b^3-2 a^3 B\right )}{a^2 \left (a^2+b^2\right )^2 d \sqrt{a+b \tan (c+d x)}}+\frac{4 \int \frac{\cot (c+d x) \left (\frac{3}{4} A \left (a^2+b^2\right )^2-\frac{3}{4} a^2 \left (2 a A b-a^2 B+b^2 B\right ) \tan (c+d x)+\frac{3}{4} b \left (3 a^2 A b+A b^3-2 a^3 B\right ) \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx}{3 a^2 \left (a^2+b^2\right )^2}\\ &=\frac{2 b (A b-a B)}{3 a \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac{2 b \left (3 a^2 A b+A b^3-2 a^3 B\right )}{a^2 \left (a^2+b^2\right )^2 d \sqrt{a+b \tan (c+d x)}}+\frac{A \int \frac{\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx}{a^2}+\frac{4 \int \frac{-\frac{3}{4} a^2 \left (2 a A b-a^2 B+b^2 B\right )-\frac{3}{4} a^2 \left (a^2 A-A b^2+2 a b B\right ) \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{3 a^2 \left (a^2+b^2\right )^2}\\ &=\frac{2 b (A b-a B)}{3 a \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac{2 b \left (3 a^2 A b+A b^3-2 a^3 B\right )}{a^2 \left (a^2+b^2\right )^2 d \sqrt{a+b \tan (c+d x)}}-\frac{(i A-B) \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 (a+i b)^2}+\frac{(i A+B) \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 (a-i b)^2}+\frac{A \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{a^2 d}\\ &=\frac{2 b (A b-a B)}{3 a \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac{2 b \left (3 a^2 A b+A b^3-2 a^3 B\right )}{a^2 \left (a^2+b^2\right )^2 d \sqrt{a+b \tan (c+d x)}}+\frac{(2 A) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{a^2 b d}-\frac{(A-i B) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (a-i b)^2 d}-\frac{(A+i B) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (a+i b)^2 d}\\ &=-\frac{2 A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{a^{5/2} d}+\frac{2 b (A b-a B)}{3 a \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac{2 b \left (3 a^2 A b+A b^3-2 a^3 B\right )}{a^2 \left (a^2+b^2\right )^2 d \sqrt{a+b \tan (c+d x)}}+\frac{(i (A+i B)) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{(a+i b)^2 b d}-\frac{(i A+B) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{(a-i b)^2 b d}\\ &=-\frac{2 A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{a^{5/2} d}+\frac{(A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{(a-i b)^{5/2} d}+\frac{(A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{(a+i b)^{5/2} d}+\frac{2 b (A b-a B)}{3 a \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac{2 b \left (3 a^2 A b+A b^3-2 a^3 B\right )}{a^2 \left (a^2+b^2\right )^2 d \sqrt{a+b \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 4.89794, size = 242, normalized size = 1.08 \[ \frac{2 \left (\frac{3 b \left (3 a^2 A b-2 a^3 B+A b^3\right )}{a \left (a^2+b^2\right ) \sqrt{a+b \tan (c+d x)}}-\frac{3 A \left (a^2+b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{a^{3/2}}+\frac{b (A b-a B)}{(a+b \tan (c+d x))^{3/2}}+\frac{3 a (a+i b) (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{2 (a-i b)^{3/2}}+\frac{3 a (a-i b) (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{2 (a+i b)^{3/2}}\right )}{3 a d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(5/2),x]

[Out]

(2*((-3*A*(a^2 + b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/a^(3/2) + (3*a*(a + I*b)*(A - I*B)*ArcTanh[Sq
rt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/(2*(a - I*b)^(3/2)) + (3*a*(a - I*b)*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c
 + d*x]]/Sqrt[a + I*b]])/(2*(a + I*b)^(3/2)) + (b*(A*b - a*B))/(a + b*Tan[c + d*x])^(3/2) + (3*b*(3*a^2*A*b +
A*b^3 - 2*a^3*B))/(a*(a^2 + b^2)*Sqrt[a + b*Tan[c + d*x]])))/(3*a*(a^2 + b^2)*d)

________________________________________________________________________________________

Maple [C]  time = 5.095, size = 185586, normalized size = 828.5 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*cot(d*x + c)/(b*tan(d*x + c) + a)^(5/2), x)